Conectividad funcional y memoria de trabajo: una revisión sistemática
PDF

Cómo citar

Landínez-Martínez, D. A., Arenas-Montoya, D. A., & Gómez-Tabares, A. S. (2020). Conectividad funcional y memoria de trabajo: una revisión sistemática. Tesis Psicológica, 16(1), 1-33. https://doi.org/10.37511/tesis.v16n1a4

Resumen

Introducción: La identificación de las redes neuronales responsables de la memoria de trabajo (MT) permite conocer con precisión el papel de estas regiones cerebrales y su relación con el proceso cognitivo. Sin embargo, la literatura actual adolece de una revisión sistemática que permita conocer la contribución de los estudios en conectividad funcional a la explicación de las bases neuronales de la MT. Objetivo: Por lo tanto, el objetivo de este artículo es presentar los hallazgos más significativos reportados en la literatura. Metodología: Primero, se realiza un análisis bibliométrico que evidencia la importancia del tema de investigación. Luego, se utiliza la herramienta Tree of Science para presentar una revisión cronológica que aporta una descripción general de las perspectivas del estado del arte. Finalmente, se realiza un análisis de conglomerados de la red de citaciones para identificar las diferentes perspectivas del tema. Por lo anterior, se plantea una ecuación de búsqueda que se aplica en la base de datos de Web of Science (WoS) desde enero de 2001 a enero de 2019. Resultados: Los resultados mostraron 4 enfoques relacionados con los cambios en la conectividad funcional en: sujetos sanos, enfermedad vascular cerebral, espectro de la esquizofrenia y otros trastornos psicóticos y trastornos del neurodesarrollo. Conclusiones: De acuerdo a cada una de estas perspectivas, se ha encontrado la activación consistente de un circuito cerebral compuesto por seis regiones involucradas con la MT: Corteza parietal posterior bilateral, corteza pre-motora bilateral, corteza pre-motora medial, polo frontal, corteza prefrontal dorso-lateral bilateral y corteza prefrontal ventro-lateral medial bilateral.

https://doi.org/10.37511/tesis.v16n1a4
PDF

Citas

REFERENCIAS

Åkerlund, E., Esbjörnsson, E., Sunnerhagen, K. S., & Björkdahl, A. (2013). Can computerized working memory training improve impaired working memory, cognition and psychological health? Brain Injury, 27(13), 1649-1657 https://doi.org/10.3109/02699052.2013.830195

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edition. Washington, DC. https://doi.org/10.1176/appi.books.9780890425596.744053

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R- tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. http://doi.org/10.1016/j.joi.2017.08.007

Avery, E. W., Yoo, K., Rosenberg, M. D., Greene, A. S., Gao, S., Na, D. L., … Chun, M. M. (2019). Distributed patterns of functional connectivity predict working memory performance in novel healthy and memory-impaired individuals. Journal of Cognitive Neuroscience, 32 (2), 241-255 https://doi.org/10.1162/jocn_a_01487

Baddeley, A. D. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 1–29. https://doi.org/10.4324/9781315111261

Baddeley, A. (2019). The episodic Buffer. En Baddeley, A (Eds.), Working memories Postmen, Divers and the cognitive revolution (50-60). New York: Routledge.

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. Proceedings of International AAAI Conference on Web and Social Media, 361- 362. https://doi.org/10.13140/2.1.1341.1520

Bertolero, M. A., Yeo, B. T. T., Bassett, D. S., & D’Esposito, M. (2018). A mechanistic model of connector hubs, modularity and cognition. Nature Human Behaviour, 2(10), 765-777. https://doi.org/10.1038/s41562-018-0420-6

Bettencourt, K. C., & Xu, Y. (2015). Decoding the content of visual short-term memory under distraction in occipital and parietal areas. Nature Neuroscience, 19(1), 150-157 https://doi.org/10.1038/nn.4174

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Le- febvre, E. (2008). Fast unfolding of commu- nities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 10(1), 1-12. https://doi.org/1742- 5468/2008/10/P10008

Cassidy, C. M., Van Snellenberg, J. X., Benavides, C., Slifstein, M., Wang, Z., Moore, H., … Horga, G. (2016). Dynamic connectivity between brain networks supports working memory: Relationships to dopamine release and schizophrenia. Journal of Neuroscience, 36(15), 4377-4388. https://doi.org/10.1523/JNEUROSCI.3296-15.2016

Chen, S. H. A., Thomas, J. D., Glueckauf, R. L., & Bracy, O. L. (1997). The effectiveness of computer-assisted cognitive rehabilitation for persons with traumatic brain injury. Brain, 11(3), 197-209. Injury. https://doi.org/10.1080/026990597123647

Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., & Haynes, J. D. (2017). The Distributed Nature of Working Memory. Trends in Cognitive Sciences, 21(2), 11-124. https://doi.org/10.1016/j.tics.2016.12.007

Cohen, J. R., & D’Esposito, M. (2016). The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience, 36(48),12083-12094. https://doi.org/10.1523/JNEUROSCI.2965-15.2016

Constantinidis, C, Franowicz, M. N., & Goldman-Rakic, P. S. (2001). Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex. Journal of Neuroscience, 21(10), 3646-3655. https://doi.org/21/10/3646 [pii]

Constantinidis, C., & Goldman-Rakic, P. S. (2002). Correlated Discharges Among Putative Pyramidal Neurons and Interneurons in the Primate Prefrontal Cortex. Journal of Neurophysiology, 88(6), 3487-3497. https://doi.org/10.1152/jn.00188.2002

Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415-423 https://doi.org/10.1016/S1364-6613(03)00197-9

De Luca, R., Calabrò, R. S., Gervasi, G., De Salvo, S., Bonanno, L., Corallo, F., … Bramanti, P. (2014). Is computer-assisted training effective in improving rehabilitative outcomes after brain injury? A case-control hospital-based study. Disability and Health Journal, 7(3), 356-360. https://doi.org/10.1016/j.dhjo.2014.04.003

Deco, G., & Rolls, E. T. (2003). Attention and working memory: A dynamical model of neuronal activity in the prefrontal cortex. European Journal of Neuroscience, 18(8), 2374-2390. https://doi.org/10.1046/j.1460-9568.2003.02956.x

Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Neurocomputational models of working memory. Nature Neuroscience, 3 Suppl, 1184–1191. https://doi.org/10.1038/81460

Elman, J. L. (2001). Connectionism and language acquisition. Language Development: The Essential Readings. https://doi.org/10.1080/016909698386483

Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive Architecture of Working Memory. Neuron, 88(1), 33-46. https://doi.org/10.1016/j.neuron.2015.09.020

Ester, E. F., Sprague, T. C., & Serences, J. T. (2015). Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory. Neuron, 87(4), 893-905. https://doi.org/10.1016/j.neuron.2015.07.013

Fernandez, E., Luisa Bringas, M., Salazar, S., Rodriguez, D., Eugenia Garcia, M., & Torres, M. (2012). Clinical Impact of RehaCom Software for Cognitive Rehabilitation of Patients with Acquired Brain Injury. Medicc Review, 14(4), 32-35. https://doi.org/10.1590/S1555-79602012000400007

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The Human Brain Is Intrinsically Organized into Dynamic, Anticorrelated Functional The human brain is intrinsically organized into dynamic, anticorrelated functional networks. PNAS, 102(27), 9673-9678. https://doi.org/10.1073/pnas.0504136102.

Fuster, J. M., & Alexander, G. E. (1971). Neuron Activity Related to Short-Term Memory. Science. 173(3997), 652-654. https://doi.org/10.1126/science.173.3997.652

Galeano Weber, E. M., Hahn, T., Hilger, K., & Fiebach, C. J. (2017). Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory. NeuroImage, 146, 404-418. https://doi.org/10.1016/j.neuroimage.2016.10.006

Gazzaley, A., Rissman, J., & D’Esposito, M. (2004). Functional connectivity during working memory maintenance. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 580-599. https://doi.org/10.3758/CABN.4.4.580

Godwin, Ji, Kandala, M. (2017). Functional connectivity of cognitive Brain networks in schizophrenia during a Working Memory Task. Frontiers in Psychiatry, 8(294), 1–12.

Goldman-Rakic, P. S. (1988). Topography of Cognition: Parallel Distributed Networks in Primate Association Cortex. Annual Review of Neuroscience, 11, 137-155. https://doi.org/10.1146/annurev.ne.11.030188.001033

Gong, W., Cheng, F., Rolls, E. T., Lo, C. Y. Z., Huang, C. C., Tsai, S. J., … Feng, J. (2019). A powerful and efficient multivariate approach for voxel-level connectome-wide association studies. NeuroImage, 188, 628-641. https://doi.org/10.1016/j.neuroimage.2018.12.032

Greene, C. M., & Soto, D. (2014). Functional connectivity between ventral and dorsal frontoparietal networks underlies stimulus-driven and working memory-driven sources of visual distraction. NeuroImage, 84, 290-298. https://doi.org/10.1016/j.neuroimage.2013.08.060

Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C., & Constable, R. T. (2006). Brain connectivity related to working memory performance. Journal of Neuroscience, 26(51), 13338-13343. https://doi.org/10.1523/JNEUROSCI.3408-06.2006

Hauke, J., Fimm, B., & Sturm, W. (2011). Efficacy of alertness training in a case of brainstem encephalitis: Clinical and theoretical implications. Neuropsychological Rehabilitation. https://doi.org/10.1080/09602011.2010.541792

Henseler, I., Falkai, P., & Gruber, O. (2010). Disturbed functional connectivity within brain networks subserving domain-specific subcomponents of working memory in schizophrenia: Relation to performance and clinical symptoms. Journal of Psychiatric Research, 44(6), 364-372. https://doi.org/10.1016/j.jpsychires.2009.09.003

Hirsch, J. E. (2005a). An index to quantify an individual’s scientific research output. PNAS, 102(46), 16569–16572. https://doi.org/10.1061/41064(358)182

Hirsch, J. E. (2005b). An index to quantify an individual ’ s scientific research output. PNAS, 102(46), 16569–16572. https://doi.org/10.1073/pnas.0507655102

Honey, G. D., Fu, C. H. Y., Kim, J., Brammer, M. J., Croudace, T. J., Suckling, J., … Bullmore, E. T. (2002). Effects of Verbal Working Memory Load on Corticocortical Connectivity Modeled by Path Analysis of Functional Magnetic Resonance Imaging Data. NeuroImage, 17(2), 573-582. https://doi.org/10.1006/nimg.2002.1193

Jaeger, H., & Eck, D. (2008). Can’t get you out of my head: A connectionist model of cyclic rehearsal. En: Wachsmuth I., Knoblich G. (eds) Modeling Communication with Robots and Virtual Humans. Lecture Notes in Computer Science, vol. 4930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79037-2_17.

Jaquerod, M. E., Mesrobian, S. K., Villa, A. E. P., Lintas, A., & Bader, M. (2020). Early attentional modulation by working memory training in young adult ADHD patients during a risky decision-making task. Brain Sciences, 10(1), 1-19. https://doi.org/10.3390/brainsci10010038

Kornfeld, S., Yuan, R., Biswal, B. B., Grunt, S., Kamal, S., Delgado Rodríguez, J. A., … Everts, R. (2018). Resting-state connectivity and executive functions after pediatric arterial ischemic stroke. NeuroImage: Clinical, 17, 359-367. https://doi.org/10.1016/j.nicl.2017.10.016

Kyriakopoulos, M., Dima, D., Roiser, J. P., Corrigall, R., Barker, G. J., & Frangou, S. (2012). Abnormal functional activation and connectivity in the working memory network in early-onset schizophrenia. Journal of the American Academy of Child and Adolescent Psychiatry, 51(9), 911-20.e2. https://doi.org/10.1016/j.jaac.2012.06.020

Landinez, D., & Montoya D. (2019). Políticas de salud pública para la prevención y el tratamiento de la enfermedad vascular cerebral: una revisión sistemática por medio de la mertodología TOS (Tree of Science). Medicina U.P.B, 38 (2), 129-139. https://doi.org/10.18566/medupb.v38n2.a05

Landinez, D., Montoya, D., & Robledo, S. (2019). Executive function performance in patients with obesity: A systematic Review. Psychologia, 13(2), 121-134. Doi: 10.21500/19002386.4230.

Li, L., Zhang, J.-X., & Jiang, T. (2011). Visual Working Memory Load-Related Changes in Neural Activity and Functional Connectivity. PLoS ONE, 6(7), e22357. https://doi.org/10.1371/journal.pone.0022357

Lin, Z. cheng, Tao, J., Gao, Y. lin, Yin, D. zhi, Chen, A. zhen, & Chen, L. dian. (2014). Analysis of central mechanism of cognitive training on cognitive impairment after stroke: Resting-state functional magnetic resonance imaging study. Journal of International Medical Research, 42(3), 659-668. https://doi.org/10.1177/0300060513505809

Loeb, F. F., Zhou, X., Craddock, K. E. S., Shora, L., Broadnax, D. D., Gochman, P., … Liu, S. (2018). Reduced Functional Brain Activation and Connectivity During a Working Memory Task in Childhood-Onset Schizophrenia. Journal of the American Academy of Child and Adolescent Psychiatry, 57(3), 166–174. https://doi.org/10.1016/j.jaac.2017.12.009

Lundqvist, A., Grundstrm, K., Samuelsson, K., & Rönnberg, J. (2010). Computerized training of working memory in a group of patients suffering from acquired brain injury. Brain Injury, 24(10), 1173-1183. https://doi.org/10.3109/02699052.2010.498007

Mazor, O., & Laurent, G. (2005). Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron, 48(4), 661-673. https://doi.org/10.1016/j.neuron.2005.09.032

Mazoyer, B., Zago, L., Mellet, E., Bricogne, S., Etard, O., Houdé, O., … Tzourio-Mazoyer, N. (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin, 54(3), 287-298. https://doi.org/10.1016/S0361-9230(00)00437-8

McClelland, J., & Rumelhart, D. (1986). Parallel distributed processing: Explorations in the microstructure cognition. Psychological and biological models.Cambridge, MA: MIT Press.

Meyer-Lindenberg, A., Poline, J.-B., Kohn, P. D., Holt, J. L., Egan, M. F., Weinberger, D. R., & Berman, K. F. (2001). Evidence for Abnormal Cortical Functional Connectivity During Working Memory in Schizophrenia. American Journal of Psychiatry, 158(11), 1809-1817. https://doi.org/10.1176/appi.ajp.158.11.1809

Nachstedt, T., & Tetzlaff, C. (2017). Working Memory Requires a Combination of Transient and Attractor-Dominated Dynamics to Process Unreliably Timed Inputs. Scientific Reports,7(1), 2473. https://doi.org/10.1038/s41598-017-02471-z

Nordvik, J. E., Walle, K. M., Nyberg, C. K., Fjell, A. M., Walhovd, K. B., Westlye, L. T., & Tornas, S. (2014). Bridging the gap between clinical neuroscience and cognitive rehabilitation: The role of cognitive training, models of neuroplasticity and advanced neuroimaging in future brain injury rehabilitation. NeuroRehabilitation, 34(1), 81-85. https://doi.org/10.3233/NRE-131017

Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. NeuroImage, 27(2), 341-356. https://doi.org/10.1016/j.neuroimage.2005.04.014

Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46-59. https://doi.org/10.1002/hbm.20131

Pascanu, R., & Jaeger, H. (2011). A neurodynamical model for working memory. Neural Networks, 24(2), 199-207. https://doi.org/10.1016/j.neunet.2010.10.003

Pentland, B., & Anderson, S. (1992). Microcomputer-based Attentional Retraining after Brain Damage: A Randomised Group Controlled Trial. Neuropsychological Rehabilitation, 2(2), 97-115. https://doi.org/10.1080/09602019208401399

Ponsford, J. L., & Kinsella, G. (1988). Evaluation of a remedial programme for attentional deficits following closed-head injury. Journal of Clinical and Experimental Neuropsychology, 10(6), 693-708. https://doi.org/10.1080/01688638808402808

Prokopenko, S. V., Mozheyko, E. Y., Petrova, M. M., Koryagina, T. D., Kaskaeva, D. S., Chernykh, T. V., … Bezdenezhnih, A. F. (2013). Correction of post-stroke cognitive impairments using computer programs. Journal of the Neurological Sciences, 325(1), 148–153. https://doi.org/10.1016/j.jns.2012.12.024

Puig, J., Blasco, G., Alberich-Bayarri, A., Schlaug, G., Deco, G., Biarnes, C., … Pedraza, S. (2018). Resting-state functional connectivity magnetic resonance imaging and outcome after acute stroke. Stroke, 49(10), 2353-2360. https://doi.org/10.1161/STROKEAHA.118.021319

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. PNAS, 98(2), 676-682. https://doi.org/10.1073/pnas.98.2.676

Rainer, G., & Miller, E. K. (2002). Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. The European Journal of Neuroscience, 15(7), 1244-1254. https://doi.org/10.1046/j.1460-9568.2002.01958.x

Robledo, S., Osorio, G. A. G., & López, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoria de grafos. Revista Vínculos, 11(2), 6–16. https://doi.org/https://doi.org/10.14483/issn.2322-939X

Roby-Brami, A., Hermsdorfer, J., Roy, A. C., & Jacobs, S. (2012). A neuropsychological perspective on the link between language and praxis in modern humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1585), 144–160. https://doi.org/10.1098/rstb.2011.0122

Rogers, T. T. (2009). Connectionist Models. Networks, 3, 75–82.Recuperado de: http://www.cnbc.cmu.edu/~plaut/IntroPDP/papers/Rogers09chap.connModels.pdf

Rutar Gorišek, V., Zupanc Isoski, V., Belič, A., Manouilidou, C., Koritnik, B., Bon, J., … Zidar, J. (2016). Beyond aphasia: Altered EEG connectivity in Broca’s patients during working memory task. Brain and Language, 163, 10-21. https://doi.org/10.1016/j.bandl.2016.08.003

Sala-Llonch, R., Palacios, E. M., Junque, C., Bargallo, N., & Vendrell, P. (2015). Functional networks and structural connectivity of visuospatial and visuoperceptual working memory. Frontiers in Human Neuroscience, 9(340), 1-9. https://doi.org/10.3389/fnhum.2015.00340

Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E. J., Glasser, M. F., … Miller, K. L. (2015). A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nature Neuroscience, 18, 1565-1567. https://doi.org/10.1038/nn.4125

Spikman, J. M., Boelen, D. H. E., Lamberts, K. F., Brouwer, W. H., & Fasotti, L. (2010). Effects of a multifaceted treatment program for executive dysfunction after acquired brain injury on indications of executive functioning in daily life. Journal of the International Neuropsychological Society, 16(1), 118-129. https://doi.org/10.1017/S1355617709991020

Sturm, W., Fimm, B., Cantagallo, A., Cremel, N., North, P., Passadori, A., … Leclercq, M. (2003). Specific Computerized Attention Training in Stroke and Traumatic Brain-Injured Patients: A European Multicenter Efficacy Study. Zeitschrift Für Neuropsychologie, 14(4), 283-292. https://doi.org/10.1024/1016-264X.14.4.283

Sturm, W., Willmes, K., Orgass, B., & Hartje, W. (1997). Do specific attention deficits need specific training? Neuropsychological Rehabilitation, 7(2), 81-103. https://doi.org/10.1080/713755526

Takeuchi, H., Taki, Y., Nouchi, R., Hashizume, H., Sekiguchi, A., Kotozaki, Y., … Kawashima, R. (2013). Effects of working memory training on functional connectivity and cerebral blood flow during rest. Cortex, 49(8), 2106-2125. https://doi.org/10.1016/j.cortex.2012.09.007

Toppi, J., Astolfi, L., Risetti, M., Anzolin, A., Kober, S. E., Wood, G., & Mattia, D. (2018). Different Topological Properties of EEG-Derived Networks Describe Working Memory Phases as Revealed by Graph Theoretical Analysis. Frontiers in Human Neuroscience, 11(637), 1-16. https://doi.org/10.3389/fnhum.2017.00637

Unsworth, N. (2010). On the division of working memory and long-term memory and their relation to intelligence: A latent variable approach. Acta Psychologica, 134(1), 16-28. https://doi.org/10.1016/j.actpsy.2009.11.010

Valencia, M. B., & Delgado, L. C. (2013). Notes for supporting an epistemological neuropsychology: Contributions from three perspectives. International Journal of Psychological Research, 6(2), 107-118. https://doi.org/10.21500/20112084.692

van de Ven, R. M., Murre, J. M., Veltman, D. J., & Schmand, B. A. (2016). Computer-Based Cognitive Training for Executive Functions after Stroke : A Systematic Review. Frontiers in Human Neuroscience, 10(150), 1-27. https://doi.org/10.3389/fnhum.2016.00150

Van Vleet, T. M., Chen, A., Vernon, A., Novakovic-Agopian, T., & D’Esposito, M. T. (2015). Tonic and phasic alertness training: a novel treatment for executive control dysfunction following mild traumatic brain injury. Neurocase, 21(4), 489-498. https://doi.org/10.1080/13554794.2014.928329

Westerberg, H., Jacobaeus, H., Hirvikoski, T., Clevberger, P., Ostensson, M.-L., Bartfai, A., & Klingberg, T. (2007). Computerized working memory training after stroke--a pilot study. Brain Injury : [BI], 21(1), 21–29. https://doi.org/10.1080/02699050601148726

Wolf, R. C., Plichta, M. M., Sambataro, F., Fallgatter, A. J., Jacob, C., Lesch, K. P., … Vasic, N. (2009). Regional brain activation changes and abnormal functional connectivity of the ventrolateral prefrontal cortex during working memory processing in adults with attention-deficit/hyperactivity disorder. Human Brain Mapping, 30(7), 2252-2266. https://doi.org/10.1002/hbm.20665

Wolff, M. J., Ding, J., Myers, N. E., & Stokes, M. G. (2015). Revealing hidden states in visual working memory using electroencephalography. Frontiers in Systems Neuroscience, 9(123), 1-12. https://doi.org/10.3389/fnsys.2015.00123

Woo, C. W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better biomarkers: Brain models in translational neuroimaging. Nature Neuroscience, 20(3), 365-377. https://doi.org/10.1038/nn.4478

World Health Organization. (2016). ICD-10 Version:2016. Who, 10(1), 1-10. https://doi.org/10.1177/1071100715600286

Wu, Z. M., Bralten, J., An, L., Cao, Q. J., Cao, X. H., Sun, L., … Wang, Y. F. (2017). Verbal working memory-related functional connectivity alterations in boys with attention-deficit/hyperactivity disorder and the effects of methylphenidate. Journal of Psychopharmacology, 31(8), 1061–1069. https://doi.org/10.1177/0269881117715607

Zhao, Q., Li, H., Yu, X., Huang, F., Wang, Y., Liu, L., … Wang, Y. (2017). Abnormal resting-state functional connectivity of insular subregions and disrupted correlation with working memory in adults with attention deficit/hyperactivity disorder. Frontiers in Psychiatry, 8, 1–10. https://doi.org/10.3389/fpsyt.2017.00200

Zickefoose, S., Hux, K., Brown, J., & Wulf, K. (2013). Let the games begin: A preliminary study using Attention Process Training-3 and Lumosity brain games to remediate attention deficits following traumatic brain injury. Brain Injury, 27(6), 707-716. https://doi.org/10.3109/02699052.2013.775484

Zuluaga, M., Robledo, S., Osorio Zuluaga, G. A., Yathe, L., Gonzalez, D., & Taborda, G. (2016). Metabolómica y Pesticidas: Revisión sistemática de literatura usando teoría de grafos para el aná- lisis de referencias. Nova, 14(25), 121-138. doi:10.22490/24629448.1735

Descargas

La descarga de datos todavía no está disponible.