Propuesta de un Modelo de Machine Learning para Predecir la Severidad de la Reabsorción Radicular Inducida por Ortodoncia
PDF (Spanish)

Keywords

Reabsorción radicular, Ortodoncia, Aprendizaje automá tico, Severidad, Predicción

Abstract

 La reabsorción radicular (RR) puede ser considerada una consecuen
cia iatrogénica común del tratamiento de ortodoncia observada por los
 ortodoncistas durante el tratamiento y su diagnóstico es principalmen
te radiográfico. El objetivo de este estudio es desarrollar un modelo que
 permita predecir la severidad de la RR que podría presentar un paciente
 considerando variables diagnósticas y del tratamiento. Esto le permitirá
 al ortodoncista prever la disposición del paciente a desarrollar RR al ini
ciar su tratamiento, con el fin de promover la toma de decisiones clínicas
 que permitan mantener la salud de los tejidos dentales. Metodología: Se
 toman 191 registros de un estudio realizado por Silva y cols. (2018), se
 realiza el respectivo etiquetado para la clasificación de la severidad de
 la reabsorción (OIEARRmax: Leve 0-15%, moderada/severa > 15%). Se
 entrenaron y evaluaron un modelo base y cuatro modelos de aprendiza
je supervisado. Resultados: se creó un modelo de análisis discriminante
 lineal que permite predecir la severidad de la RR con una sensibilidad
 del 60.67% y una precisión del 74.88%. También se logran establecer
 como las variables más influyentes en el modelo el uso de aparatología
 funcional y Hyrax, edad, presencia de extracciones o mordida abierta y
 duración de tratamiento. El hábito de interposición lingual parece no te
ner un rol relevante en el desarrollo de la RR. Conclusión: se entrenaron
 y evaluaron diferentes modelos de aprendizaje automático supervisado,
 logrando buena sensibilidad y precisión con el modelo de análisis dis
criminante lineal (LDA), sin embargo, la elaboración de nuevos modelos
 de clasificación evaluando otras variables como antecedentes médicos y
 odontológicos personales, así como un mayor tamaño muestral para el
 entrenamiento del modelo, es requerida para buscar predicciones que
 sean aplicables con mayor seguridad en la práctica ortodóncica diaria.

PDF (Spanish)

References

AKDEN˙ IZ, S. and TOSUN, M. E. (2021). A review of the use of artificial intelligence in orthodontics.

Journal of Experimental and Clinical Medicine, 38(SI-2):157–162, DOI: 10.52142/omujecm.38.si.dent.13,

https://doi.org/10.52142/omujecm.38.si.dent.13.

Alemam, A. A., Alhaija, E. S. A., Mortaja, K., and AlTawachi, A. (2020). Incisor root resorption

associated with palatally displaced maxillary canines: Analysis and prediction using discriminant

function analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 157(1):80–90, DOI:

1016/j.ajodo.2019.08.008, https://doi.org/10.1016/j.ajodo.2019.08.008.

Imagina, Diseña y Construye: Revista Apuntes de Ciencia e Ingeniería

Facultad de Ingeniería y Ciencias Básicas

Alqerban, A., Jacobs, R., Fieuws, S., and Willems, G. (2015). Predictors of root resorption associated

with maxillary canine impaction in panoramic images. The European Journal of Orthodontics, 38(3):292

, DOI: 10.1093/ejo/cjv047, https://doi.org/10.1093/ejo/cjv047.

Amat, J. (2016).

Análisis discriminante lineal (lda) y análisis discriminante cuadrático

(qda). Online, https://cienciadedatos.net/documentos/28_linear_discriminant_analysis_lda_

y_quadratic_discriminant_analysis_qda.

Årtun, J., Hullenaar, R. V. '., Doppel, D., and Kuijpers-Jagtman, A. M. (2009). Identification of ortho

dontic patients at risk of severe apical root resorption. American Journal of Orthodontics and Dento

facial Orthopedics, 135(4):448–455, DOI: 10.1016/j.ajodo.2007.06.012, https://doi.org/10.1016/j.

ajodo.2007.06.012.

Association, W. N. (2020). Nuclear power, energy and the environment. Online, hhttps://www.

world-nuclear.org/getmedia/b8351b4a-82dc-4dee-a2a2-c42e295d0f61/Pocket-Guide-Booklet.

pdf.aspx.

Baumrind, S., Korn, E. L., and Boyd, R. L. (1996). Apical root resorption in orthodontically

treated adults. American Journal of Orthodontics and Dentofacial Orthopedics, 110(3):311–320, DOI:

1016/s0889-5406(96)80016-3, https://doi.org/10.1016/s0889-5406(96)80016-3.

Beck, B. W. and Harris, E. F. (1994). Apical root resorption in orthodontically treated subjects: Analysis

of edgewise and light wire mechanics. American Journal of Orthodontics and Dentofacial Orthopedics,

(4):350–361, DOI: 10.1016/s0889-5406(94)70129-6, https://doi.org/10.1016/s0889-5406(94)

-6.

Bichu, Y. M., Hansa, I., Bichu, A. Y., Premjani, P., Flores-Mir, C., and Vaid, N. R. (2021). Applications of

artificial intelligence and machine learning in orthodontics: a scoping review. Progress in Orthodontics,

(1), DOI: 10.1186/s40510-021-00361-9, https://doi.org/10.1186/s40510-021-00361-9.

Björk, A. (1953). Variability and age changes in overjet and overbite. American Journal of Orthodon

tics, 39(10):779–801, DOI: 10.1016/0002-9416(53)90084-0, https://doi.org/10.1016/0002-9416(53)

-0.

Brezniak, N. and Wasserstein, A. (2002).

resorption. part i: The basic science aspects.

Orthodontically induced inflammatory root

The Angle orthodontist, 72:175–9, DOI:

1043/0003-3219(2002)072<0175:OIIRRP>2.0.CO;2.

Brooks, S. (2008). Radiation doses of common dental radiographic examinations: A review. Acta

stomatologica Croatica, 42:207–217, https://api.semanticscholar.org/CorpusID:70561375.

Büyük, S. K. and Hatal, S. (2019). Artificial intelligence and machine learning in orthodontics. Or

tado˘gu Tıp Dergisi, 11(4):517–523, DOI: 10.21601/ortadogutipdergisi.547782, https://doi.org/10.

/ortadogutipdergisi.547782.

https://doi.org/10.37511/apuntesci.v1n2a5

ISSN: 2745-2956

Chiqueto, K., Martins, D. R., and Janson, G. (2008). Effects of accentuated and reversed curve of spee

on apical root resorption. American Journal of Orthodontics and Dentofacial Orthopedics, 133(2):261–268,

DOI: 10.1016/j.ajodo.2006.01.050, https://doi.org/10.1016/j.ajodo.2006.01.050.

Collett, A. R. (2000). Current concepts on functional appliances and mandibular growth stimulation.

Australian Dental Journal, 45(3):173–178, DOI: 10.1111/j.1834-7819.2000.tb00553.x, https://doi.

org/10.1111/j.1834-7819.2000.tb00553.x.

Darendeliler, M. A., Kharbanda, O., Chan, E., Srivicharnkul, P., Rex, T., Swain, M., Jones, A.,

and Petocz, P. (2004). Root resorption and its association with alterations in physical pro

perties, mineral contents and resorption craters in human premolars following application of

light and heavy controlled orthodontic forces. Orthodontics and craniofacial research, 7:79–97, DOI:

1111/j.1601-6343.2004.00281.x.

Imagina, Diseña y Construye: Revista Apuntes de Ciencia e Ingeniería

Facultad de Ingeniería y Ciencias Básicas

Dudic, A., Giannopoulou, C., Leuzinger, M., and Kiliaridis, S. (2009). Detection of apical root re

sorption after orthodontic treatment by using panoramic radiography and cone-beam computed tomo

graphy of super-high resolution. American Journal of Orthodontics and Dentofacial Orthopedics, 135(4):434

, DOI: 10.1016/j.ajodo.2008.10.014, https://doi.org/10.1016/j.ajodo.2008.10.014.

Fernandes, L. Q. P., Figueiredo, N. C., Antonucci, C. C. M., Lages, E. M. B., Andrade, I., and

Junior, J. C. (2019). Predisposing factors for external apical root resorption associated with ortho

dontic treatment. The Korean Journal of Orthodontics, 49(5):310, DOI: 10.4041/kjod.2019.49.5.310,

https://doi.org/10.4041/kjod.2019.49.5.310.

Graber, T., Vanarsdall, R., Vig, K., Graber, L., and Vanarsdall, R. (2006). Ortodoncia: Principios y Técnicas

Actuales. Barcelona, ISBN: 9788481749588, https://books.google.com.co/books?id=rFI9Nily0cYC.

Guo, Y., He, S., Gu, T., Liu, Y., and Chen, S. (2016). Genetic and clinical risk factors of root resor

ption associated with orthodontic treatment. American Journal of Orthodontics and Dentofacial Orthope

dics, 150(2):283–289, DOI: 10.1016/j.ajodo.2015.12.028, https://doi.org/10.1016/j.ajodo.2015.

028.

Ifesanya, J., AT, A., and Otuyemi, O. (2013). Overjet as a predictor of skeletal base discrepancy among

nigerians with malocclusion. West African Journal of Orthodontics, Volume 2:20–24.

Jung, Y.-H. and Cho, B.-H. (2011). External root resorption after orthodontic treatment: a study of

contributing factors. Imaging Science in Dentistry, 41(1):17, DOI: 10.5624/isd.2011.41.1.17, https:

//doi.org/10.5624/isd.2011.41.1.17.

Linge, L. and Linge, B. O. (1991). Patient characteristics and treatment variables associated with apical

root resorption during orthodontic treatment. American Journal of Orthodontics and Dentofacial Orthope

dics, 99(1):35–43, DOI: 10.1016/s0889-5406(05)81678-6, https://doi.org/10.1016/s0889-5406(05)

-6.

Linkous, E. R., Trojan, T. M., and Harris, E. F. (2020). External apical root resorption and vectors of

orthodontic tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics, 158(5):700–709,

DOI: 10.1016/j.ajodo.2019.10.017, https://doi.org/10.1016/j.ajodo.2019.10.017.

Liu, W., Shao, J., Li, S., Al-balaa, M., Xia, L., Li, H., and Hua, X. (2021). Volumetric cone-beam

computed tomography evaluation and risk factor analysis of external apical root resorption with clear

aligner therapy. The Angle Orthodontist, 91(5):597–603, DOI: 10.2319/111820-943.1, https://doi.org/

2319/111820-943.1.

Lombardo, L., Sgarbanti, C., Guarneri, A., and Siciliani, G. (2012). Evaluating the correlation bet

ween overjet and skeletal parameters using DVT. International Journal of Dentistry, 2012:1–7, DOI:

1155/2012/921942, https://doi.org/10.1155/2012/921942.

Lopatiene, K. and Dumbravaite, A. (2008). Risk factors of root resorption after orthodontic treatment.

Stomatologija, 10(3):89–95.

https://doi.org/10.37511/apuntesci.v1n2a5

ISSN: 2745-2956

Maués, C. P. R., do Nascimento, R. R., and de Vasconcellos Vilella, O. (2015). Severe root resorption

resulting from orthodontic treatment: Prevalence and risk factors. Dental Press Journal of Orthodontics,

(1):52–58, DOI: 10.1590/2176-9451.20.1.052-058.oar, https://doi.org/10.1590/2176-9451.20.

052-058.oar.

Mohammad-Rahimi, H., Nadimi, M., Rohban, M. H., Shamsoddin, E., Lee, V. Y., and Motame

dian, S. R. (2021). Machine learning and orthodontics, current trends and the future opportunities:

A scoping review. American Journal of Orthodontics and Dentofacial Orthopedics, 160(2):170–192.e4, DOI:

1016/j.ajodo.2021.02.013, https://doi.org/10.1016/j.ajodo.2021.02.013.

Mohandesan, H., Ravanmehr, H., and Valaei, N. (2007). A radiographic analysis of external api

cal root resorption of maxillary incisors during active orthodontic treatment. The European Journal of

Orthodontics, 29(2):134–139, DOI: 10.1093/ejo/cjl090, https://doi.org/10.1093/ejo/cjl090.

Imagina, Diseña y Construye: Revista Apuntes de Ciencia e Ingeniería

Facultad de Ingeniería y Ciencias Básicas

Motokawa, M., Terao, A., Kaku, M., Kawata, T., Gonzales, C., Darendeliler, M. A., and Tanne, K.

(2013a). Open bite as a risk factor for orthodontic root resorption. European journal of orthodontics, 35,

DOI: 10.1093/ejo/cjs100.

Motokawa, M., Terao, A., Kaku, M., Kawata, T., Gonzales, C., Darendeliler, M. A., and Tanne, K.

(2013b). Open bite as a risk factor for orthodontic root resorption. European journal of orthodontics, 35,

DOI: 10.1093/ejo/cjs100.

Okano, T. and Sur, J. (2010). Radiation dose and protection in dentistry. Japanese Dental Science Review,

(2):112–121, DOI: 10.1016/j.jdsr.2009.11.004, https://doi.org/10.1016/j.jdsr.2009.11.004.

p. Jiang, R., McDonald, J. P., and k. Fu, M. (2010). Root resorption before and after orthodontic

treatment: a clinical study of contributory factors. The European Journal of Orthodontics, 32(6):693–697,

DOI: 10.1093/ejo/cjp165, https://doi.org/10.1093/ejo/cjp165.

Pereira, S., Lavado, N., Nogueira, L., Lopez, M., Abreu, J., and Silva, H. (2013). Polymorphisms

of genes encoding p2x7r, IL-1b, OPG and RANK in orthodontic-induced apical root resorption. Oral

Diseases, 20(7):659–667, DOI: 10.1111/odi.12185, https://doi.org/10.1111/odi.12185.

Picanço, G. V., de Freitas, K. M. S., Cançado, R. H., Valarelli, F. P., Picanço, P. R. B., and Feijão, C. P.

(2013). Predisposing factors to severe external root resorption associated to orthodontic treatment.

Dental Press Journal of Orthodontics, 18(1):110–120, DOI: 10.1590/s2176-94512013000100022, https:

//doi.org/10.1590/s2176-94512013000100022.

Picanço, G., Freitas, K. M., Cançado, R., Valarelli, F., Picanço, P., and Feijão, C. (2013). Predisposing

factors to severe external root resorption associated to orthodontic treatment. Dental press journal of

orthodontics, 18:110–20, DOI: 10.1590/S2176-94512013000100022.

Rizell, S., Svensson, B., Tengström, C., and Kjellberg, H. (2006). Functional appliance treatment outco

me and need for additional orthodontic treatment with fixed appliance. Swedish dental journal, 30:61–8.

Sameshima, G. T. and Sinclair, P. M. (2001a). Predicting and preventing root resorption: Part i.

diagnostic factors. American Journal of Orthodontics and Dentofacial Orthopedics, 119(5):505–510, DOI:

1067/mod.2001.113409, https://doi.org/10.1067/mod.2001.113409.

Sameshima, G. T. and Sinclair, P. M. (2001b). Predicting and preventing root resorption: Part II.

treatment factors. American Journal of Orthodontics and Dentofacial Orthopedics, 119(5):511–515, DOI:

1067/mod.2001.113410, https://doi.org/10.1067/mod.2001.113410.

Segal, G., Schiffman, P., and Tuncay, O. (2004). Meta analysis of the treatment-related fac

tors of external apical root resorption. Orthodontics and Craniofacial Research, 7(2):71–78, DOI:

1111/j.1601-6343.2004.00286.x, https://doi.org/10.1111/j.1601-6343.2004.00286.x.

Sharab, L. Y., Morford, L. A., Dempsey, J., Falcão-Alencar, G., Mason, A., Jacobson, E., Kluemper,

G. T., Macri, J. V., and Hartsfield, J. K. (2015). Genetic and treatment-related risk factors associated

with external apical root resorption (EARR) concurrent with orthodontia. Orthodontics mathsemicolon

Craniofacial Research, 18:71–82, DOI: 10.1111/ocr.12078, https://doi.org/10.1111/ocr.12078.

https://doi.org/10.37511/apuntesci.v1n2a5

ISSN: 2745-2956

Silva, H. C., Pereira, S. A., Canova, F., Nogueira, L. M., Lopez, M. G., and Lavado, N. (2018).

Orthodontically induced external apical root resorption with genetic and non-genetic factors. DOI:

5281/ZENODO.1324556, https://zenodo.org/record/1324556.

Tahereh, J., Ahrari, F., and Foroozandeh, A. (2009). Effect of tongue thrust swallowing on

position of anterior teeth. Journal of Dental Research, Dental Clinics, Dental Prospects, 3, DOI:

5681/joddd.2009.019.

Topkara, A., Karaman, A., and Kau, C. (2012). Apical root resorption caused by orthodontic

forces: A brief review and a long-term observation. European journal of dentistry, 6:445–53, DOI:

1055/s-0039-1698986.

Vila, R. (2020). Anatomía dental. UNAM, Dirección General de Publicaciones y Fomento Editorial,

ISBN: 9786073026529, https://books.google.com.co/books?id=lBrLDwAAQBAJ.

Imagina, Diseña y Construye: Revista Apuntes de Ciencia e Ingeniería

Facultad de Ingeniería y Ciencias Básicas

Vizcaíno-Salazar, G. J. (2017). Importancia del cálculo de la sensibilidad, la especificidad y otros

parámetros estadísticos en el uso de las pruebas de diagnóstico clínico y de laboratorio. Medicina y

Laboratorio, 23(7-8):365–386, DOI: 10.36384/01232576.34, https://doi.org/10.36384/01232576.34.

Yashin, D., Dalci, O., Almuzian, M., Chiu, J., Ahuja, R., Goel, A., and Darendeliler, M. A. (2017).

Markers in blood and saliva for prediction of orthodontically induced inflammatory root resorption: a

retrospective case controlled-study. Progress in Orthodontics, 18(1), DOI: 10.1186/s40510-017-0176-y,

https://doi.org/10.1186/s40510-017-0176-y.

Zain, M. N. M., Yusof, Z. M., Basri, K. N., Yazid, F., Teh, Y. X., Ashari, A., Ariffin, S. H. Z.,

and Wahab, R. M. A. (2022). Multivariate versus univariate spectrum analysis of dentine sia

lophosphoprotein (DSPP) for root resorption prediction: a clinical trial. BMC Oral Health, 22(1), DOI:

1186/s12903-022-02178-2, https://doi.org/10.1186/s12903-022-02178-2.